Structure-based color of natural petals discriminated by polymer replication.

نویسندگان

  • Seung-Mo Lee
  • Johannes Üpping
  • Andreas Bielawny
  • Mato Knez
چکیده

The optical appearance of many flowers in nature relies on their inherent pigments ("chemical color") as well as on the surface structure of the epidermis ("structural color"). The structural color is created by a combination of regular and irregular micro- and nanosized features. With a red rose petal as a biological template, we have separated the structural coloration from the chemical coloration by reproducing the petal's intricate surface structure in a pigment-free polymer. UV-vis reflectance measurements of the templates showed that the pigment-induced chemical coloration of the red-rose petal results in intense absorption and reflection in the green (∼550 nm) and red (∼700 nm) spectral region, respectively. The micro- and nanosized structural hierarchy on the petal surface, on the other hand, induced a modulation of the optical reflectivity and a filtering effect in specific wavelength ranges. More notably, we observed that a variation in the size of the micro/nanostructures on the petal surface leads to an effective modulation of the reflectance. These results could provide useful tips for the design of bioinspired optical devices, emulating natural petal structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saffron Petals, a by-product for dyeing of wool fibers ‎

The dyeing of wool fibers using saffron petals as a natural dye has been studied for first time in this paper. Saffron petal is one of the by-products of fields which are thrown away after harvesting while they can possibly be used. A series of dyeing formulation prepared with saffron petals and different mordants and the mordant effect on hue, light and wash fastness of dyed fibers were invest...

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

Resistance Properties of Printed Polyolefin Films using Water-Based Inks

During recent decades due to the increase in pollutants release from various industries, reduction or elimination of volatile organic compounds VOCs has become one of the main purposes of researches in order to protect the environment. In this research, two acrylic emulsion resins and an adhesion promoter polyester emulsion resin were used to optimize water-based printing ink formulation for pr...

متن کامل

رنگرزی نخ خامه پشمی با گل زعفران، بررسی تأثیر دندانه و اسید

This research work involves the dyeing of wool yarns with saffron petals as a source for green color. At first step woolen pile yarns treated with four different mordents, namely: tin chloride, copper sulfate, aluminum sulfate and iron(II) sulfate in acidic condition using acetic, oxalic, citric and lactic acids respectively. In this study the possibility of using saffron petals as a natural dy...

متن کامل

Synthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells

In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2011